80x-(2x^2)+300-(x^2)=0

Simple and best practice solution for 80x-(2x^2)+300-(x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80x-(2x^2)+300-(x^2)=0 equation:



80x-(2x^2)+300-(x^2)=0
determiningTheFunctionDomain -2x^2-x^2+80x+300=0
We add all the numbers together, and all the variables
-3x^2+80x+300=0
a = -3; b = 80; c = +300;
Δ = b2-4ac
Δ = 802-4·(-3)·300
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10000}=100$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-100}{2*-3}=\frac{-180}{-6} =+30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+100}{2*-3}=\frac{20}{-6} =-3+1/3 $

See similar equations:

| 80x-(2x^2)=-300 | | x2+6W-11=0 | | X+5(x-2)=50 | | 240000=x+36000=306 | | 5a-30=4a-6 | | 20x-(x^​2)+200-(x^​2)=0 | | X^2-x-1740=0 | | -6d=-25 | | (t+1/t)=4(t-1/t) | | X^2-2x-1739=0 | | x+3/x+1=3x+5/6x-1 | | 5+3x-40-2x=0 | | X^2-x-1984=0 | | x-12=1/2 | | (7x-4)/(5x+2)-2=10 | | 6x=2(12-x) | | 1/(x-8)=5 | | 3/4-4/5x=1 | | 11x-8=6x | | 1/(x+5)=-8 | | 2(3x)+5)-x=35 | | -4x+15+6x=7 | | x+8=12x+16 | | 5x4+4=4-4+3 | | -3x/3+9=6 | | 2x+180=2x+190 | | 6-8(2x+3)=4 | | 17y-8=1314 | | 3a+13=5a-7 | | 7^(-x-6)=8^(6x) | | 7x-(4x+8)=13 | | 5(4x+11)+3(2x+4)=3 |

Equations solver categories